Integrated III

Solve the equation.

1) $\log _{5}(x+1)=1+\log _{5}(x-2)$
2) $\log _{3}(x-4)=1$
3) $\log _{3}(x+4)+\log _{3}(x-2)=3$
4) $2(3 x-7)=4$
5) $4^{1+2 x}=1024$
6) $92 x \cdot 27(3-x)=\frac{1}{9}$
7) $e^{x+7}=2$

Solve the problem.

8) $f(x)=\log _{2}(x-4)$ and $g(x)=\log _{2}(3 x+14)$. Solve $\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})=6$.
9) The formula $\mathrm{A}=287 \mathrm{e}^{0.034 t}$ models the population of a particular city, in thousands, t years after 1998 . When will the population of the city reach 377 thousand?

Solve.
10) The value of a particular investment follows a pattern of exponential growth. In the year 2000, you invested money in a money market account. The value of your investment t years after 2000 is given by the exponential growth model $\mathrm{A}=7600 \mathrm{e}^{0.066 t}$. When will the account be worth $\$ 9896$?

Solve the problem.

11) The value of a particular investment follows a pattern of exponential growth. In the year 2000, you invested money in a money market account. The value of your investment t years after 2000 is given by the exponential growth model $\mathrm{A}=6600 \mathrm{e}^{0.062 \mathrm{t}}$. How much did you initially invest in the account?
12) The size P of a small herbivore population at time t (in years) obeys the function $P(t)=1000 e^{0.25 t}$ if they have enough food and the predator population stays constant. After how many years will the population reach 3000 ?

Find an equation for the line with the given properties.
13) Perpendicular to the line $y=-3 x-4$; containing the point $(4,-3)$

Write the expression in the standard form a +bi .
14) $(5+8 i)(7+8 i)$

Find the standard form and the center of the ellipse.

15) $4 x^{2}+5 y^{2}-56 x+50 y+301=0$

Form a polynomial whose zeros and degree are given. Hint: Write in factored form then multiply.
16) Zeros: -3, -2, 2; degree 3

Use the quadratic formula to solve the equation.
17) $x^{2}+10 x+3=0$

Solve the problem.
18) The owner of a video store has determined that the profits P of the store are approximately given by $P(x)=-x^{2}+120 x+70$, where x is the number of videos rented daily. Find the maximum profit to the nearest dollar (Hint: Find the y value of the vertex).

Solve the system of equations by using substitution.

$$
\text { 19) }\left\{\begin{array}{r}
x+7 y=-2 \\
3 x+y=34
\end{array}\right.
$$

Use the elimination method to solve the system.
20) $\left\{\begin{aligned} 9 x+36 y & =36 \\ 8 x-6 y & =-6\end{aligned}\right.$
21) Solve:

$$
\begin{aligned}
& 4 x^{2}+6 y^{2}-55 x+3 y+126=0 \\
& x-y=4
\end{aligned}
$$

Solve the systems of equations problem by the elimination method.
22) There were 33,000 people at an All Things Sacred Concert in Los Angeles. The day's receipts were $\$ 261,000$.

How many people paid $\$ 13$ for reserved seats and how many paid $\$ 5$ for general admission?
23) Solve:

$$
\begin{aligned}
& -x^{2}+y^{2}+6 x-10 y-8=0 \\
& x^{2}-y^{2}-6 x+21 y-102=0
\end{aligned}
$$

Solve the equation. Use natural logarithms. When appropriate, give solutions to three decimal places unless otherwise indicated.
24) $e^{0.451 x}=24$
25) $e^{-0.358 x}=23$

Solve the equation. Give the exact solution or solutions.
26) $\log 9(x-3)+\log 9(x-3)=1$
27) $\log _{3}(x+6)+\log _{3}(x-6)=1$
28) $\log (6 x-5)=\log 25-\log (x-5)$

Answer Key

Testname: REVIEW GUIDE \#2 FOR EXAM \#1

1) $\left\{\frac{11}{4}\right\}$
2) $\{7\}$
3) $\{5\}$
4) $\{3\}$
5) $\{2\}$
6) $\{-11\}$
7) $\{\ln 2-7\}$
8) $\{6\}$
9) 2006
10) 2004
11) $\$ 6600.00$
12) 4.39 yrs
13) $y=\frac{1}{3} x-\frac{13}{3}$
14) $-29+96 i$
15) $\frac{(x-7)^{2}}{5}+\frac{(y+5)^{2}}{4}=1$ and center: $(7,-5)$
16) $f(x)=x^{3}+3 x^{2}-4 x-12$
17) $\{-5 \pm \sqrt{22}\}$
18) $\$ 3670$
19) $x=12, y=-2$
20) $x=0, y=1$
21) $(7,3),(3,-1)$
22) 12,000 paid $\$ 13$ and 21,000 paid $\$ 5$
23) $(4,10),(2,10)$
24) $\{7.047\}$
25) $\{-8.758\}$
26) $\{6\}$
27) $\{\sqrt{39}\}$
28) $\left\{\frac{35}{6}\right\}$
