1) $\log_5 (x + 1) = 1 + \log_5 (x - 2)$ 2) $\log_3 (x - 4) = 1$ 3) $\log_3 (x + 4) + \log_3 (x - 2) = 3$ 4) 2(3x - 7) = 45) $4^1 + 2x = 1024$ 6) $9^{2x} \cdot 27(3 - x) = \frac{1}{9}$ 7) $e^{x + 7} = 2$

Solve the problem.

- 8) $f(x) = \log_2(x 4)$ and $g(x) = \log_2(3x + 14)$. Solve f(x) + g(x) = 6.
- 9) The formula $A = 287e^{0.034t}$ models the population of a particular city, in thousands, t years after 1998. When will the population of the city reach 377 thousand?

Solve.

10) The value of a particular investment follows a pattern of exponential growth. In the year 2000, you invested money in a money market account. The value of your investment t years after 2000 is given by the exponential growth model $A = 7600e^{0.066t}$. When will the account be worth \$9896?

Solve the problem.

- 11) The value of a particular investment follows a pattern of exponential growth. In the year 2000, you invested money in a money market account. The value of your investment t years after 2000 is given by the exponential growth model $A = 6600e^{0.062t}$. How much did you initially invest in the account?
- 12) The size P of a small herbivore population at time t (in years) obeys the function $P(t) = 1000e^{0.25t}$ if they have enough food and the predator population stays constant. After how many years will the population reach 3000?

Find an equation for the line with the given properties.

13) Perpendicular to the line y = -3x - 4; containing the point (4, -3)

Write the expression in the standard form a + bi.

14) (5 + 8i)(7 + 8i)

Find the standard form and the center of the ellipse.

15) $4x^2 + 5y^2 - 56x + 50y + 301 = 0$

Form a polynomial whose zeros and degree are given. Hint: Write in factored form then multiply.

16) Zeros: -3, -2, 2; degree 3

Use the quadratic formula to solve the equation.

17) $x^2 + 10x + 3 = 0$

Solve the problem.

18) The owner of a video store has determined that the profits P of the store are approximately given by

 $P(x) = -x^2 + 120x + 70$, where x is the number of videos rented daily. Find the maximum profit to the nearest dollar (Hint: Find the y value of the vertex).

Solve the system of equations by using substitution.

 $\begin{cases} x + 7y = -2\\ 3x + y = 34 \end{cases}$

Use the elimination method to solve the system.

 $20) \begin{cases} 9x + 36y = 36\\ 8x - 6y = -6 \end{cases}$

21) Solve:

$$4x^2 + 6y^2 - 55x + 3y + 126 = 0$$

 $x - y = 4$

Solve the systems of equations problem by the elimination method.

22) There were 33,000 people at an All Things Sacred Concert in Los Angeles. The day's receipts were \$261,000. How many people paid \$13 for reserved seats and how many paid \$5 for general admission?

23) Solve:

$$-x^{2} + y^{2} + 6x - 10y - 8 = 0$$

 $x^{2} - y^{2} - 6x + 21y - 102 = 0$

Solve the equation. Use natural logarithms. When appropriate, give solutions to three decimal places unless otherwise indicated.

24) $e^{0.451x} = 24$

25) $e^{-0.358x} = 23$

Solve the equation. Give the exact solution or solutions.

26) $\log_9 (x - 3) + \log_9 (x - 3) = 1$

```
27) \log_3(x+6) + \log_3(x-6) = 1
```

28) $\log(6x - 5) = \log 25 - \log(x - 5)$

Answer Key Testname: REVIEW GUIDE #2 FOR EXAM #1

 $1)\left\{\frac{11}{4}\right\}$ 2) {7} 3) {5} 4) {3} 5) {2} 6) {-11} 7) {ln 2 - 7} 8) {6} 9) 2006 10) 2004 11) \$6600.00 12) 4.39 yrs 13) $y = \frac{1}{3}x - \frac{13}{3}$ 14) **-**29 **+** 96i 15) $\frac{(x-7)^2}{5} + \frac{(y+5)^2}{4} = 1$ and center: (7, -5) 16) $f(x) = x^3 + 3x^2 - 4x - 12$ 17) $\{-5 \pm \sqrt{22}\}$ 18) \$3670 19) x = 12, y = -2 20) x = 0, y = 121) (7, 3), (3, -1) 22) 12,000 paid \$13 and 21,000 paid \$5 23) (4, 10), (2, 10) 24) {7.047} 25) {-8.758} 26) {6} 27) {\[\sqrt{39}\]} 28) $\left\{ \frac{35}{6} \right\}$