\qquad

1. A-APR. 3 Sketch the graph of the polynomial. $f(x)=-3 x^{2}(x+5)(x-3)^{2}$

2. A-APR.6. Rewrite $f(x)=-3 x^{2}(x+5)(x-3)^{2}$ into standard form using multiplication. (You should use the area model to not make mistakes.)
3. F-BF.4a. Find the inverse function. $y=10^{7 x}+3$. Verify your answer using the value $x=\frac{2}{7}$.
4. F-IF.7b. Write the exact equations of the graphs below. (Solve for a.)
a)

b)

5. F-LE.4. Write the equation of the exponential function in the form $y=a b^{x}+k$ that passes through the points $(-2,101)$ and $(1,5)$ and has a horizontal asymptote at $y=1$.
\qquad Per: \qquad
6. A-CED.1. Solve for x. Check for extraneous solutions.
a. $\sqrt{x-5}=x+3$
b. $\log _{4}(x)-\log _{4}(x+5)=3$
7. A-APR. 3 Sketch the graph of the polynomial.
$f(x)=4(x-1)^{3}(x+6)$

8. A-APR.6. Rewrite $f(x)=4(x-1)^{3}(x+6)$ into standard form using multiplication. (You should use the area model to not make mistakes.)
9. A-APR.6. Divide.
a.

$$
\frac{6 x^{4}-5 x^{3}+10 x^{2}-18 x+5}{3 x-1}
$$

$\left(x^{4}-6 x^{3}+18 x-4\right) \div(x-2)$
b.
$x - 3 \longdiv { x ^ { 3 } + x ^ { 2 } - 1 4 x + 3 }$
c.

