4.1.3 How can I factor this?

Factoring More Quadratics

Practice your new method for factoring quadratic expressions without tiles as you consider special types of quadratic expressions.

4-24. Factor each quadratic expression below, if possible. Use a Diamond Problem and area model for each one.

$$
a \cdot x^{2}+6 x+9
$$

c. $x^{2}+5 x-7$

$$
\text { b. } 2 x^{2}+5 x+3
$$

d. $3 m^{2}+m-14$

4-25. You have been working with quadratic expressions written in the form $a x^{2}+b x+c$. But what if a term is missing? Or what if the terms are in a different order? Consider these questions while you factor the expressions below. Share your ideas with your teammates and be prepared to demonstrate your process for the class.

a. $9 x^{2}-4$

b. $12 x^{2}-16 x$

c. $3+8 k^{2}-10 k$

d. $40-100 \mathrm{~m}$

4-26. Now use an area model and a Diamond Problem to factor the expression below. Compare your answer with your teammates' answers. Is there more than one possible answer?
$4 x^{2}-10 x-6$

4-27. Emily Rae designed an area model puzzle for her team to solve.
a. What are the missing portions of the area model?
b. Write an equation that shows the area of the entire rectangle as a product equal to its area as a sum. Simplify where possible.

4.1.3 How can I factor this?

Factoring More Quadratics

Practice your new method for factoring quadratic expressions without tiles as you consider special types of quadratic expressions.

4-24. Factor each quadratic expression below, if possible. Use a Diamond Problem and area model for each one.
a. $x^{2}+6 x+9$

c. $x^{2}+5 x-7$

$$
\text { b. } 2 x^{2}+5 x+3
$$

d. $3 m^{2}+m-14$

4-25. You have been working with quadratic expressions written in the form $a x^{2}+b x+c$. But what if a term is missing? Or what if the terms are in a different order? Consider these questions while you factor the expressions below. Share your ideas with your teammates and be prepared to demonstrate your process for the class.

$$
\text { a. } 9 x^{2}-4
$$

b. $12 x^{2}-16 x$

4-26. Now use an area model and a Diamond Problem to factor the expression below. Compare your answer with your teammates' answers. Is there more than one possible answer?
$4 x^{2}-10 x-6$

4-27. Emily Rae designed an area model puzzle for her team to solve.

1. What are the missing portions of the area model?
2. Write an equation that shows the area of the entire rectangle as a product equal to its area as a sum. Simplify where possible.

